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Random walk models of electron tunneling in a fluctuating medium
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A modified approach to the electron transfer theory in disordered media is discussed by use of continuous
time random walk models accounting for medium fluctuations. The models apply to the situations when the
bridging medium between the donor and acceptor pair fluctuates changing coupling between intermediate
transferring states. Effect of the latter on the long distance electron transfer is discussed pointing out emergence
of nonexponential decay kinetics.
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. INTRODUCTION Ho M ge= €00mnt B(Smns1T Smn—1)- (1.4

Electron transfefET) is fundamental in chemistryl—3] This picture represents the limit of the effective “two-state”
and biology[4], being an integral part of many processesapproximation to ET, in which the “bridge” should be un-
ranging from photosynthesis and oxidative phosphorylatiorderstood as the tunneling mediugih may consist, e.g., of
to molecular electronic design. In numerous biological ex-protein, protein and water, or protein and cofac{&®. Sp;
amples of ET reaction, a single electron is tunneling in arand 3;, denote the electronic couplings between the states
inhomogeneous medium over large distances of several angp)(|A)) and the states of the bridgg;; are the couplings
stroms. The intervening medium can be either a proteirbetween directly overlapping atomic orbitals of neighboring
backbone or a sequence of cofactors embedded in a proteitoms along the tunneling path. For a simplified case of a
matrix. Due to a large separation between the donor anfinear bridge ofL orbitals the Green function of the bridge,
acceptor, direct electronic coupling between the chroand in consequence the tunneling maffix, is proportional
mophores is negligible, rendering thus the question on the
effect of medium on enhancement of the electronic coupling
[5]. A possible realization of the long-distance ET process is L Bjj+1
a transfer mediated through the medium that acts as a bridge Toa~11 e (1.9
providing virtual states for the tunneling electrf®i. ! !

The long distance, nonadiabatic reaction corresponds to
weak electronic couplindp 5 between the state of reactdht
and producth, which leads to the expression for the rate

Where e— €; is the energy difference between the tunneling
energy and the energy of the bridging orbitalThe above
formula constitutes the essential part of the ET pathways
models[5,7] in proteins, where the calculation of the effec-
(1.2) tive electronic coupling is based on a general assumption that

the electron wave function decay is softer for propagating

through a chemical bond than through space jump. Since the
where Frc is the Franck-Condon nuclear factor associatectoupling coefficients3 are exponentially decaying function
with the nuclear modes activation barrier. In a conventionabf the distance between subsequent medium cefdaé&rms,
theory the Condon approximation is assumed, i.e., the elethe effective tunneling matrix can be recast in the form
tronic couplingTp, is viewed as independent of the coordi-
nates of the medium. To account for thermal fluctuations of
the bridge or random intervening medium, the electronic Toa)=T3All exp(—a;x)
coupling has to be a function of the modes of the medium. '

2 5
kETZTTDAfFC,

L

The simplest expression that can be proposed in such a case L
is the Mc Connell formuld6,7] =Toaexg — 2 ajx|, (1.6)
J
TDAz_E Boil Goblij Bia (1.2  Wherex; are fluctuations of the atomic coordinates of the
ij

bridge, «; are constants characterizing strength of the cou-

pling to a particular bridge modeand T%A corresponds to
where the bracketed expression stands for the Green functiqfe average, equilibrium tunneling matrix. The sum in the

of the bridge formula above may be viewed as a superposition of random
impulses arriving at random instants of time. The length of
Gob(€)=(Hprigge—€) %, (1.3  the electron path between the donor and acceptor reached by
time t is then a cummulative sum of virtual jump;
with Hyiqge given by the “tight binding Hamiltonian,” = ajX; whereL =L (t) denotes a process determining the to-
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tal number of random jumpX; in time intervalt. Such a  whereX;=a;x; are assumed in the form of nonnegative in-
representation of the effective tunneling maffi, enables dependent and identically distributéitD ) random variables.
us to use the notion of the continuous time random walkn SUch an approximation the path length is described as a
(CTRW) as a very convenient mathematical tool to analyzein€ar Markov “birth process17-19. The probability dis-
the decay with time of the donor state occupation density. triPution of the dominant path length

In this paper we present several stochastic schemes of d Prof X(t)<x]
CTRWs that may induce the empirical time dependence of p(x,t)= ,
the average transfer matrix. We discuss an approach based dx
directly on the definition of the distancg(t) reached up by
the electron in time intervdl We analyze the statistical prop-
erties of counting procességt) and jumpsX; yielding in
the long time limit the “classical” exponential, the stretched *
exponential and also the power-tailed decays with time. Our ¢ (s)=E[e/$¥]= Z E[eSX|L(t)=]j]ProgL(t)=j].
analysis of a class of nonexponential decays is based on the =0
idea of negative-binomial-stable distributiof&-10]. 23

(2.2

can be evaluated by using the technique of the characteristic
function

Due to the independence of variabl¥s, the conditional
Il. RANDOM WALK MODEL OF THE TUNNELING PATH expectation value in the formula above can be represented in

The continuoug(fracta) time random walk, a walk with the form

random waiting times between successive jumps, introduced o ()]

by Montroll and Weisq11] has been successfully appheq, (’b(s):E[eISX]:e*V(t)Z [px(]——. (2.4
for instance, to fully developed turbulence, transport in dis- j=o0 J:

ordered or fractal media, intermittent chaotic systems, and . o )

relaxation phenomen&l2-16. The common feature of FOr nonnegativeX; distributed exponentiallypy=ge#*
these applications is that they exhibit anomalous diffusion. 1With >0 that leads to

is manifested by a non-Gaussian asymptotic distribution o j j
(propagator, diffusion frontof distance reached up to large At ( B ) [»(V)]

. 1on ¢ . d(s)=e "0 . = (2.5)
timet by a walker initially at the origin. The analysis of the i=o \B—is j!

asymptotic distribution in most approaches is based on a

formal expression for the Fourier-Laplace transform of theffrom which the desired probability density follows as the
total distance and hence the useful, explicit inversion formuinverse Fourier transform

las have been provided only under some restrictive assump- w L

. . . . . [ﬁv(t)]”lxj

tions on spatiotemporal coupling. In general, the single jump p(x,t)=e" v(t)—ﬁxE

of the electron along the tunneling path between the donor ' i=o (J+DIj!

and acceptor depends on its waiting time in an arbitrary way, Bu(t)| 12

yielding both decoupled and a class of various coupled — a-uty—px| PY Ty
memory CTRWSs. The purpose of this paper is to consider the € X Ji@2VxBr(1), (2.6

distribution of the resultant 1-dim hopping when the steps ) » _ ] _
occurring in subsequent jumps fluctuate in number and whewhereJ;(z) is the modified Bessel function of the first kind.
the length of each step is governed by the distributions thathe mean value and the variance of the dominant path can be
are asymptotic to stable distributions, i.e., those that remaifibtained directly from the characteristic function

invariant under convolution operation. The advantage of . 1 2 5

such an approach is that rigorous results can be derived with- E[X()]=v(t)B™ ", o(t)=2v(1)B"% (2.7

out specifying the character of spatiotemporal coupling andyhich gives also an estimate for the average transfer matrix
with a limited knowledge of accurate statistics of the Jumps’-l-DA

lengths.
Let us first discuss the exponential decay of the average * B \[vt)]
transfer matrix. It might be connected to the following sto- E[TDA]zTgAe* V(‘)E —) o
chastic scenario. Assume that the total numbg} of virtual =0 \p+1 I
jumps exerted in timeé by an electron on its path between —T9 e YOLA+A)], 2.9

the donor and acceptor is described by the Poisson counting

process with the intensity(t). This assumption is equiva- Time dependence of the average transfer matrix is then fully
lent to the fact that the total path of the electron is a Supergetermined by the intensity;(t)_ For constant frequency
position of random “impulses” arriving at random Poisson ,(t)= t, the decay of the transfer matrix over long distance
times. The total lengtiX(t) of the electron path is then a of ET reaction is governed by a characteristic time (1

cumulative sum +8)/v.
L(t) Let us now discuss the nonexponential decays. We pro-
X(t)= E v 21 vide calculations carried out for the average transfer matrix
(=2, ajX;, (2.1 -
=1 based on limit theorems for sums of a random number of

011103-2



RANDOM WALK MODELS OF ELECTRON TUNNELING IN . . . PHYSICAL REVIEW E65 011103
nonnegative IID random variables. In this case the limiting
probability distributions ofX(t) for larget can be repre-
sented via stable lawR0]. To describe the electron path we
use, in analogy to the geostable distributj@i], the notion

of the negative-binomial-stable distributiof&9].

¢umB=Euﬂ=g;mf

pl'
T (1-q2"

IIl. LIMITING DISTRIBUTIONS FOR BINOMIAL is fully characterized by the parametgysandr [q=1—p,
RANDOM WALKS for the particular case of negative-binomial statistics repre-

This section discusses properties of one-dimensional rarfented by Eq(3.3), p=c/(t+c)] from which, forz=1 the
dom walks with fluctuating step number that follows statis-first two moments may be found by differentiating
tics of the negative binomial distribution. By assuming the
model in whichL(t) follows the negative binomial law, we E[L]= r(l-p) r(l—p)
allow for the clustering in the number of random steps. This p 2
can be shown by noticing that the negative-binomial law can
be obtained as a result of mixing a Poisson distribution withThe simplest statistical model leading to a negative-binomial

z=¢'s, (3.6)

o?[L]=

(3.7

a gamma distribution

(Vt)le—vt
[

Prot{L(t)zI}sz—f(v)dv, 3.
0
wheref(v) is given by

f(v)= eyt (3.2

I'(r)

As an effect of mixing, random variable(t) is distributed
according to

number fluctuations of the path stepsis a birth-death-
immigration model for the formation of subsequent joints in
the L chain[18]

dp,
St =R+ DPL =[O )l + 01P

+[N(I=21)+0]P,_4, (3.8
whereP,(t) is the probability of finding joints at timet, \,
andu are, respectively, the birth and death rates for creation
(annihilation of the joint per unit of time and stands for
the constant production of joints indepenent of their actual
number. Equatiori3.8) can be solved exactly by use of the
generating functiorp(z,t), which along with the initial con-

ProfL(t)=1} Ird+nf_c )r t dition L(0)=0 leads to
ro t)=I|l=
Ll {c+t) \c+t A= oI\ N iy ]~
e Gl borrer ) Il R v ey
ron PP (33 L

The distribution of intervals between the random points gov-The above expression is exactly of the type E2j6) and
erned by the negative-binomial law EQ.3) is defines negative-binomial distribution fBY(I,t) with param-
etersp=(\—u)(Ae?"M'— )" 1 andr=6/\. The class of

—1_ _ negative-binomial distributions has a long-time tradition in

Prob{l(to,t)=1}=1-Profl(to,t) =0} biological [18,19 and physical[22] modelling. In biology

r overdispersed negative-binomial distributiorelative vari-

, (3.4) ance for the latter is p/ and thus always=1) has been
applied to model growth of populations; physical examples

f hich th bability density foll by diff tiati [22] cover among others, random walk models of the scat-
rom which the probability density Tollows by dilferentiation. o .o electromagnetic field in granular materials.

In contrast to the S|mple. PO'SS.OH case when the dlstances Negative-binomial step number fluctuations introduce
between randomly occurring points are exponentially distrib-

tod d bles. th ve-bi 2l point correlations into the random wallcf., Eq. (3.5] that are
uted rancdom variables, the negative-binomial point ProceSgp a4 cterized by clustering of subsequent steps. That result
leads to the Pareto distribution of intervals,

can be further generalized by considering honhomogeneous
or nonstationary Poisson process for whigf) varies with
time.
dt Let the numbellL(t) of virtual jumps of an electroror

the number of connections forming the tunneling peadh
35  timet be distributed according to the negative-binomial law
obtained by mixing a nonstationary Poisson process with pa-
The moment-generating function for the negative-binomiakrametery(t)=vt* with the gamma densit{3.2). The result-
distribution ing distribution adopts the form

c
c+t

T(t)= Prodl(ty,t)=1}

=c'r(c+t) "L,
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' whereA=[T'(1- 8)]*#]>0 is a normalizing constant and

ProfiL(t=1}= | | [ | @10 v
ro =|}= . (3. X),
PO \e+te) \c+te
18
In terms of the above interpretation, clustering parameisr V(x)= Pf04 (EGr,l <I ) (3.17

expressed by the ratio between frequencies of free creation

of joints and the production of new bonds out of existingrepresents the distribution of a random variadlgiven by

ones. o _ the formula
We will further focus on limiting forms of the probability

density functions for the variabM(t) being the length of the

path created out of (t)=1 random elements. The counting V:(EGr,l
procesd.(t) is taken as independent of jumps, which are

assumed to form a sequence of nonnegative 1D random varifhe random position of the electron for long timgerget)
ables belonging to the domain of attraction of the completely{tan be hence expressed as

asymmetric Ley-stable lawSg , [20], i.e.,

18
Spa. (3.19

B 1/B
ProX;>x}=Bx#, (3.11) X(t)=At# EG,,1> Sg.1- (3.19
or In consequence, the time dependence of the transfer matrix
n Toa average is giyen by the weighted average of the above
E X random variable, i.e.,
. j
j=1
lim ——————— =BYs,, 3.1 B g
n—o [r(l_ﬂ)]llﬂnllﬁ p 342 E[TDA]:T%AE[eXF{_Ata/B<EGr,1 Sgal|-
(3.20

for largex and 0<B<1. A power law distribution Eq(3.12
would indicate here that no matter the scale at which one igaking into account that the Laplace transform for the stable
looking at the distribution of length; , the same proportion  djstribution is[20]
of smaller and larger contribution§’s to the electron path is
detected. E[e USsa]=e v, (3.2
For this model of decoupled random walk, tatends to
infinity, the limiting distribution of the number of jumps e get
converges to a gamma distribution

. (- B\UE 18
| L(t) 1 E[TDA]:TDAL exp{ —[At“’ﬁ(g) xYe ]gr(x)dx
lim Prob —=<I1{— =G, «(I). (3.13
t—o ta c B —r B —r
70 Bya _70 a
—T9,| 1+ — Akt ) —79,( 1+ =T (1-p)t ) .
In fact, from Eq.(3.6) one gets c ¢
_ (3.22
(c+t%) c is
Pr(S) =) | 17| 1~ el s P Let us observe that for€a<1 andr>0 the above formula

determines the power-tailed long time decay of the average
-r transfer matrix

S
~\[a-i3)
c BI'(1— la
s E[Toal=Tpa(DD) ", D=(—(C ﬂ)) ,
exp{ [ EG”) } (3.14 (3.23

while for r tending to infinity, B=1/r and any timet, it
determines the stretched exponential decay behavior

=E

where (1¢)G,; stands for the gamma random variable
whose distribution density function is given by

g(x):[crr(r)]—lxr—le—CX’ x>0. (315) E[TDA]:TgAei(llc)F(liﬁ)ta, (324)

Accordingly, the long time limi([9,10]) for the length of the with the special case of c_IassicaI exponentiall deca;ags
path traversed by an electron tends to tends to one. Thus depending on the asymptotic behavior of

the distribution of jumps length and properties of the point

X(t) (counting process, this simple random walk model qualita-

lim prob{ <x{—V(x), (3.1p tively demonstrates transitions among different regimes of
AtP the characteristic decay of an averaged transfer matrix.

t—ow
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From a physical perspective, our approach is similar tadependence of the electronic coupling on the nuclear coordi-
the pathway methof5] used in the description of the elec- nates of the medium and as such, they express possible de-
tron tunneling in biological media. The original formulation viation from the usual Condon approximatiph7]. The ef-
of the pathway model, however, focuses severe limitation: ifects arising from the static and dynamic fluctuations in
does not include possibility of interference among variouselectronic coupling have been discussed in a number of pa-
paths and the paths for ET transfer are treated as rigid Crygyers (Refs. [7,23,24 and references thersimelated to the
tallographic structure without accounting for dynamic mo-g|ectron transport in proteins and polymers. All of them have
tion within bridging path. On the other hand, the dynamicalc|agimed existence of nontrivial effective coupling resulting
motion of the bridge changes its geometry that results in time,; averaging over environmental disorder.
variations of the orbital overlaps and couplings, giving rise In this paper we have proposed a model to account for

to gqrnforn?at[[?]pal ser;sntlw_tty_of the %eetrr\] flt"r?ctt'o? E.3) ffluctuations in long distance electron transfer reaction. Our
and Ipa. In this context, it Is possibie that interierence o approach relates to the situation of decoherent transport
various contributing paths can dominate the ET mechanism : . .
) . ... Wwhen the hopping behavior of the transmitted charge can
[23], which then becomes controlled by dynamic variations o ;
- - : decay slowly with distance. The model is based on CTRW
of the intervening medium. N :
kinetics in the representation of random sums of IID ele-
ments that are deviations from equilibrium of the atomic
coordinates of the bridging medium. In contrast to other
The long-range transfer of an electron in polymeric orwork [13,15, the present approach is based on renewal
various biological materials is determined by the nature otheory and uses limit theorems for random su@d(Q] of
electronic coupling, which for the long distances is mediatequmps instead of Tauberian theorems for the two-dimensional
by sequential overlaps of atomic orbitals of the donor, the_Laplace-Fourier transform.
intervening medium{bridge, and the orbitals of the accep-  The asymptotic average character of the electronic matrix
tor. Internal random motion of the medium may result inelements has been investigated pointing out that the decay of
fluctuations of the tunneling barriers between subsequerthe electron tunneling can exhibit nonexponential behavior
transfer states and modulate the electronic coupling. Isimilar to anomalous relaxation in complex glasslike sys-

should be stressed that, those effects are formally due to thems.
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