
PHYSICAL REVIEW E, VOLUME 65, 011103
Random walk models of electron tunneling in a fluctuating medium
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A modified approach to the electron transfer theory in disordered media is discussed by use of continuous
time random walk models accounting for medium fluctuations. The models apply to the situations when the
bridging medium between the donor and acceptor pair fluctuates changing coupling between intermediate
transferring states. Effect of the latter on the long distance electron transfer is discussed pointing out emergence
of nonexponential decay kinetics.
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I. INTRODUCTION

Electron transfer~ET! is fundamental in chemistry@1–3#
and biology @4#, being an integral part of many process
ranging from photosynthesis and oxidative phosphorylat
to molecular electronic design. In numerous biological e
amples of ET reaction, a single electron is tunneling in
inhomogeneous medium over large distances of several
stroms. The intervening medium can be either a prot
backbone or a sequence of cofactors embedded in a pr
matrix. Due to a large separation between the donor
acceptor, direct electronic coupling between the ch
mophores is negligible, rendering thus the question on
effect of medium on enhancement of the electronic coup
@5#. A possible realization of the long-distance ET proces
a transfer mediated through the medium that acts as a br
providing virtual states for the tunneling electron@6#.

The long distance, nonadiabatic reaction corresponds
weak electronic couplingTDA between the state of reactantD
and productA, which leads to the expression for the rate

kET5
2p

\
TDA

2 FFC, ~1.1!

whereFFC is the Franck-Condon nuclear factor associa
with the nuclear modes activation barrier. In a conventio
theory the Condon approximation is assumed, i.e., the e
tronic couplingTDA is viewed as independent of the coord
nates of the medium. To account for thermal fluctuations
the bridge or random intervening medium, the electro
coupling has to be a function of the modes of the mediu
The simplest expression that can be proposed in such a
is the Mc Connell formula@6,7#

TDA52(
i j

bDi@Gbb# i j b jA , ~1.2!

where the bracketed expression stands for the Green fun
of the bridge

Gbb~e!5~Hbridge2e!21, ~1.3!

with Hbridge given by the ‘‘tight binding Hamiltonian,’’
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Hbridge
mn 5ebdmn1b~dm,n111dm,n21!. ~1.4!

This picture represents the limit of the effective ‘‘two-state
approximation to ET, in which the ‘‘bridge’’ should be un
derstood as the tunneling medium~it may consist, e.g., of
protein, protein and water, or protein and cofactors@5#!. bDi
and b jA denote the electronic couplings between the sta
uD&(uA&) and the states of the bridge,b i j are the couplings
between directly overlapping atomic orbitals of neighbori
atoms along the tunneling path. For a simplified case o
linear bridge ofL orbitals the Green function of the bridge
and in consequence the tunneling matrixTDA is proportional
to

TDA')
j

L
b j , j 11

e2e j
, ~1.5!

wheree2e j is the energy difference between the tunneli
energy and the energy of the bridging orbitalj. The above
formula constitutes the essential part of the ET pathw
models@5,7# in proteins, where the calculation of the effe
tive electronic coupling is based on a general assumption
the electron wave function decay is softer for propagat
through a chemical bond than through space jump. Since
coupling coefficientsb are exponentially decaying functio
of the distance between subsequent medium centers~atoms!,
the effective tunneling matrix can be recast in the form

TDA~x!5TDA
0 )

j

L

exp~2a j xj !

5TDA
0 expS 2(

j

L

a j xj D , ~1.6!

where xj are fluctuations of the atomic coordinates of t
bridge, a j are constants characterizing strength of the c
pling to a particular bridge modej and TDA

0 corresponds to
the average, equilibrium tunneling matrix. The sum in t
formula above may be viewed as a superposition of rand
impulses arriving at random instants of time. The length
the electron path between the donor and acceptor reache
time t is then a cummulative sum of virtual jumpsXj
5a j xj whereL5L(t) denotes a process determining the
©2001 The American Physical Society03-1
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tal number of random jumpsXj in time interval t. Such a
representation of the effective tunneling matrixTDA

0 enables
us to use the notion of the continuous time random w
~CTRW! as a very convenient mathematical tool to analy
the decay with time of the donor state occupation densit

In this paper we present several stochastic scheme
CTRWs that may induce the empirical time dependence
the average transfer matrix. We discuss an approach b
directly on the definition of the distanceX(t) reached up by
the electron in time intervalt. We analyze the statistical prop
erties of counting processesL(t) and jumpsXj yielding in
the long time limit the ‘‘classical’’ exponential, the stretche
exponential and also the power-tailed decays with time. O
analysis of a class of nonexponential decays is based on
idea of negative-binomial-stable distributions@8–10#.

II. RANDOM WALK MODEL OF THE TUNNELING PATH

The continuous~fractal! time random walk, a walk with
random waiting times between successive jumps, introdu
by Montroll and Weiss@11# has been successfully applie
for instance, to fully developed turbulence, transport in d
ordered or fractal media, intermittent chaotic systems,
relaxation phenomena@12–16#. The common feature o
these applications is that they exhibit anomalous diffusion
is manifested by a non-Gaussian asymptotic distribut
~propagator, diffusion front! of distance reached up to larg
time t by a walker initially at the origin. The analysis of th
asymptotic distribution in most approaches is based o
formal expression for the Fourier-Laplace transform of
total distance and hence the useful, explicit inversion form
las have been provided only under some restrictive assu
tions on spatiotemporal coupling. In general, the single ju
of the electron along the tunneling path between the do
and acceptor depends on its waiting time in an arbitrary w
yielding both decoupled and a class of various coup
memory CTRWs. The purpose of this paper is to consider
distribution of the resultant 1-dim hopping when the ste
occurring in subsequent jumps fluctuate in number and w
the length of each step is governed by the distributions
are asymptotic to stable distributions, i.e., those that rem
invariant under convolution operation. The advantage
such an approach is that rigorous results can be derived w
out specifying the character of spatiotemporal coupling a
with a limited knowledge of accurate statistics of the jum
lengths.

Let us first discuss the exponential decay of the aver
transfer matrix. It might be connected to the following st
chastic scenario. Assume that the total numberL(t) of virtual
jumps exerted in timet by an electron on its path betwee
the donor and acceptor is described by the Poisson coun
process with the intensityn(t). This assumption is equiva
lent to the fact that the total path of the electron is a sup
position of random ‘‘impulses’’ arriving at random Poisso
times. The total lengthX(t) of the electron path is then
cumulative sum

X~ t !5(
j 51

L(t)

a j xj , ~2.1!
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whereXj5a j xj are assumed in the form of nonnegative i
dependent and identically distributed~IID ! random variables.
In such an approximation the path length is described a
linear Markov ‘‘birth process’’@17–19#. The probability dis-
tribution of the dominant path length

p~x,t !5
d Prob@X~ t !<x#

dx
, ~2.2!

can be evaluated by using the technique of the character
function

f~s!5E@eisX#5(
j 50

`

E@eisXuL~ t !5 j #Prob@L~ t !5 j #.

~2.3!

Due to the independence of variablesXj , the conditional
expectation value in the formula above can be represente
the form

f~s!5E@eisX#5e2n(t)(
j 50

`

@fX~s!# j
@n~ t !# j

j !
. ~2.4!

For nonnegativeXj distributed exponentiallypX5be2bX

with b.0 that leads to

f~s!5e2n(t)(
j 50

` S b

b2 isD j @n~ t !# j

j !
, ~2.5!

from which the desired probability density follows as th
inverse Fourier transform

p~x,t !5e2n(t)2bx(
j 50

`
@bn~ t !# j 11xj

~ j 11!! j !

5e2n(t)2bxS bn~ t !

x D 1/2

J1„2Axbn~ t !…, ~2.6!

whereJ1(z) is the modified Bessel function of the first kind
The mean value and the variance of the dominant path ca
obtained directly from the characteristic function

E@X~ t !#5n~ t !b21, s2~ t !52n~ t !b22, ~2.7!

which gives also an estimate for the average transfer ma
TDA ,

E@TDA#5TDA
0 e2n(t)(

j 50

` S b

b11D j @n~ t !# j

j !

5TDA
0 e2n(t)[1/~11b)#. ~2.8!

Time dependence of the average transfer matrix is then f
determined by the intensityn(t). For constant frequency
n(t)5nt, the decay of the transfer matrix over long distan
of ET reaction is governed by a characteristic time
1b)/n.

Let us now discuss the nonexponential decays. We p
vide calculations carried out for the average transfer ma
based on limit theorems for sums of a random number
3-2
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RANDOM WALK MODELS OF ELECTRON TUNNELING IN . . . PHYSICAL REVIEW E65 011103
nonnegative IID random variables. In this case the limiti
probability distributions ofX(t) for large t can be repre-
sented via stable laws@20#. To describe the electron path w
use, in analogy to the geostable distribution@21#, the notion
of the negative-binomial-stable distributions@8,9#.

III. LIMITING DISTRIBUTIONS FOR BINOMIAL
RANDOM WALKS

This section discusses properties of one-dimensional
dom walks with fluctuating step number that follows stat
tics of the negative binomial distribution. By assuming t
model in whichL(t) follows the negative binomial law, we
allow for the clustering in the number of random steps. T
can be shown by noticing that the negative-binomial law c
be obtained as a result of mixing a Poisson distribution w
a gamma distribution

Prob$L~ t !5 l %5E
0

`~nt ! le2nt

l !
f ~n!dn, ~3.1!

where f (n) is given by

f ~n!5
cr

G~r !
e2cnn r 21. ~3.2!

As an effect of mixing, random variableL(t) is distributed
according to

Prob$L~ t !5 l %5
G~ l 1r !

G~r !l ! S c

c1t D
r S t

c1t D
l

5
G~ l 1r !

G~r !l !
pr~12p! l . ~3.3!

The distribution of intervals between the random points g
erned by the negative-binomial law Eq.~3.3! is

Prob$ l ~ t0 ,t !>1%512Prob$ l ~ t0 ,t !50%

512S c

c1t D
r

, ~3.4!

from which the probability density follows by differentiation
In contrast to the simple Poisson case when the dista
between randomly occurring points are exponentially dist
uted random variables, the negative-binomial point proc
leads to the Pareto distribution of intervals,

T~ t !5
Prob$ l ~ t0 ,t !>1%

dt

5crr ~c1t !2r 21. ~3.5!

The moment-generating function for the negative-binom
distribution
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, z5eis, ~3.6!

is fully characterized by the parametersp and r @q512p,
for the particular case of negative-binomial statistics rep
sented by Eq.~3.3!, p5c/(t1c)# from which, for z51 the
first two moments may be found by differentiating

E@L#5
r ~12p!

p
, s2@L#5

r ~12p!

p2
. ~3.7!

The simplest statistical model leading to a negative-binom
number fluctuations of the path stepsL is a birth-death-
immigration model for the formation of subsequent joints
the L chain @18#

dPl

dt
5m~ l 11!Pl 112@~l1m!l 1u#Pl

1@l~ l 21!1u#Pl 21 , ~3.8!

wherePl(t) is the probability of findingl joints at timet, l,
andm are, respectively, the birth and death rates for crea
~annihilation! of the joint per unit of time andu stands for
the constant production of joints indepenent of their act
number. Equation~3.8! can be solved exactly by use of th
generating functionf(z,t), which along with the initial con-
dition L(0)50 leads to

f~z,t !5S l2m

le(l2m)t2m
D u/lF12z

le(l2m)t2l

le(l2m)t2m
G2u/l

.

~3.9!

The above expression is exactly of the type Eq.~3.6! and
defines negative-binomial distribution forP( l ,t) with param-
etersp5(l2m)(le(l2m)t2m)21 and r 5u/l. The class of
negative-binomial distributions has a long-time tradition
biological @18,19# and physical@22# modelling. In biology
overdispersed negative-binomial distribution~relative vari-
ance for the latter is 1/p and thus always>1) has been
applied to model growth of populations; physical examp
@22# cover among others, random walk models of the sc
tered electromagnetic field in granular materials.

Negative-binomial step number fluctuations introdu
correlations into the random walk@cf., Eq. ~3.5!# that are
characterized by clustering of subsequent steps. That re
can be further generalized by considering nonhomogene
or nonstationary Poisson process for whichn(t) varies with
time.

Let the numberL(t) of virtual jumps of an electron~or
the number of connections forming the tunneling path! at
time t be distributed according to the negative-binomial la
obtained by mixing a nonstationary Poisson process with
rametern(t)5nta with the gamma density~3.2!. The result-
ing distribution adopts the form
3-3
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Prob$L~ t !5 l %5
G~ l 1r !

G~r !l ! S c

c1taD rS ta

c1taD l

. ~3.10!

In terms of the above interpretation, clustering parameterr is
expressed by the ratio between frequencies of free crea
of joints and the production of new bonds out of existi
ones.

We will further focus on limiting forms of the probability
density functions for the variableX(t) being the length of the
path created out ofL(t)5 l random elements. The countin
processL(t) is taken as independent of jumpsXj , which are
assumed to form a sequence of nonnegative IID random v
ables belonging to the domain of attraction of the complet
asymmetric Le´vy-stable lawSb,1 @20#, i.e.,

Prob$Xj.x%5Bx2b, ~3.11!

or

lim
n→`

(
j 51

n

Xj

@G~12b!#1/bn1/b
5B1/bSb,1 , ~3.12!

for largex and 0,b,1. A power law distribution Eq.~3.12!
would indicate here that no matter the scale at which on
looking at the distribution of lengthsXi , the same proportion
of smaller and larger contributionsXi ’s to the electron path is
detected.

For this model of decoupled random walk, ast tends to
infinity, the limiting distribution of the number of jumpsl
converges to a gamma distribution

lim
t→`

ProbH L~ t !

ta
< l J → 1

c
Gr ,1~ l !. ~3.13!

In fact, from Eq.~3.6! one gets

FNB~s!5H ~c1ta!

c F12S 12
c

c1taD expS is

taD G J 2r

→F S 12 i
s

cD G2r

5EFexpS i
s

c
Gr ,1D G , ~3.14!

where (1/c)Gr ,1 stands for the gamma random variab
whose distribution density function is given by

g~x!5@crG~r !#21xr 21e2cx, x.0. ~3.15!

Accordingly, the long time limit~@9,10#! for the length of the
path traversed by an electron tends to

lim
t→`

ProbH X~ t !

Ata/b
,xJ →V~x!, ~3.16!
01110
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whereA5@G(12b)#1/b] .0 is a normalizing constant an
V(x),

V~x!5ProbH S B

c
Gr ,1D 1/b

< l J , ~3.17!

represents the distribution of a random variableV given by
the formula

V5S B

c
Gr ,1D 1/b

Sb,1 . ~3.18!

The random position of the electron for long times~large t)
can be hence expressed as

X~ t !5Ata/bS B

c
Gr ,1D 1/b

Sb,1 . ~3.19!

In consequence, the time dependence of the transfer m
TDA average is given by the weighted average of the ab
random variable, i.e.,

E@TDA#5TDA
0 EH expF2Ata/bS B

c
Gr ,1D 1/b

Sb,1G J .

~3.20!

Taking into account that the Laplace transform for the sta
distribution is@20#

E@e2uSb,1#5e2ub
, ~3.21!

we get

E@TDA#5TDA
0 E

0

`

expH 2FAta/bS B

c D 1/b

x1/bGbJ gr~x!dx

5TDA
0 S 11

B

c
AbtaD 2r

5TDA
0 S 11

B

c
G~12b!taD 2r

.

~3.22!

Let us observe that for 0,a,1 andr .0 the above formula
determines the power-tailed long time decay of the aver
transfer matrix

E@TDA#5TDA
0 ~Dt !2ar , D5S BG~12b!

c D 1/a

,

~3.23!

while for r tending to infinity, B51/r and any timet, it
determines the stretched exponential decay behavior

E@TDA#5TDA
0 e2~1/c)G(12b)ta, ~3.24!

with the special case of classical exponential decay aa
tends to one. Thus depending on the asymptotic behavio
the distribution of jumps length and properties of the po
~counting! process, this simple random walk model qualit
tively demonstrates transitions among different regimes
the characteristic decay of an averaged transfer matrix.
3-4
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RANDOM WALK MODELS OF ELECTRON TUNNELING IN . . . PHYSICAL REVIEW E65 011103
From a physical perspective, our approach is similar
the pathway method@5# used in the description of the elec
tron tunneling in biological media. The original formulatio
of the pathway model, however, focuses severe limitation
does not include possibility of interference among vario
paths and the paths for ET transfer are treated as rigid c
tallographic structure without accounting for dynamic m
tion within bridging path. On the other hand, the dynami
motion of the bridge changes its geometry that results in t
variations of the orbital overlaps and couplings, giving r
to conformational sensitivity of the Green function Eq.~1.3!
and TDA . In this context, it is possible that interference
various contributing paths can dominate the ET mechan
@23#, which then becomes controlled by dynamic variatio
of the intervening medium.

IV. CONCLUSIONS

The long-range transfer of an electron in polymeric
various biological materials is determined by the nature
electronic coupling, which for the long distances is media
by sequential overlaps of atomic orbitals of the donor,
intervening medium~bridge!, and the orbitals of the accep
tor. Internal random motion of the medium may result
fluctuations of the tunneling barriers between subsequ
transfer states and modulate the electronic coupling
should be stressed that, those effects are formally due to
er
w

di

at

c
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dependence of the electronic coupling on the nuclear coo
nates of the medium and as such, they express possible
viation from the usual Condon approximation@1,7#. The ef-
fects arising from the static and dynamic fluctuations
electronic coupling have been discussed in a number of
pers ~Refs. @7,23,24# and references therein! related to the
electron transport in proteins and polymers. All of them ha
claimed existence of nontrivial effective coupling resultin
from averaging over environmental disorder.

In this paper we have proposed a model to account
fluctuations in long distance electron transfer reaction. O
approach relates to the situation of decoherent trans
when the hopping behavior of the transmitted charge
decay slowly with distance. The model is based on CTR
kinetics in the representation of random sums of IID e
ments that are deviations from equilibrium of the atom
coordinates of the bridging medium. In contrast to oth
work @13,15#, the present approach is based on rene
theory and uses limit theorems for random sums@9,10# of
jumps instead of Tauberian theorems for the two-dimensio
Laplace-Fourier transform.

The asymptotic average character of the electronic ma
elements has been investigated pointing out that the deca
the electron tunneling can exhibit nonexponential behav
similar to anomalous relaxation in complex glasslike s
tems.
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